Novel CAR-T Cell Therapy that can be Activated, Silenced, and Reprogrammed In Vivo with Soluble Protein Adapters in Dose Dependent Manner

Janine Buonanto, Justin Edwards, David LeFleur, Jeffrey Swers, Jenny Mu, Liubov Zaitkaya, Ankit Gupta, Hui Wang, Sannie Ng, Laura Richman, Angela Shen, David Hilbert

Arcellx, Inc., Gaithersburg, MD

Introduction

Arcellx has developed a novel gene-modified cell therapy engineered to address a number of current CAR-T cell limitations such as:
- Fixed antigen-targeting is unable to address tumor heterogeneity and antigen escape
- Inability to control rate of cell killing that may result in side-effects such as severe CDIs, neurotoxicity, and/or ‘on-target, off-tumor’ toxicities
- Cell exhaustion from being constitutively active
- Limited persistence due to immunogenicity

The ARC-sparX platform is designed to give physicians control of the target specificity and rate of cell killing to potentially increase efficacy and manage toxicities.

The ARC-sparX Platform

The ARC-sparX platform enables the antigen-recognition and killing functions of conventional CAR-T therapy and is comprised of two key components:
1. sparX technology provides antigen-recognition in living protein binds specific antigens on diseased cells and targets them for destruction.
2. ARC-T Cells deliver antigen Recognition Complex (ARC) to bind sparX proteins and kill flagged cells.

Novel CAR-T Cell Therapy that can be Activated, Silenced, and Reprogrammed In Vivo with Soluble Protein Adapters in Dose Dependent Manner

Novel Binding Domains and TAG are Foundational to ARC-sparX Platform

Novel Binding Domains

- Non-self-binding domains are based on ‘off-the-shelf’ randomized at 13-14 amino acid binding regions
- Incorporates binding domains for both ARC-T and sparX that are: high affinity, low nanomolar range
- Only achieved active form of daughter of ARC-T + sparX = doped cell
- Gene-seq vector regardless of antigen target enables production of antigen-specific based therapies

Novel CAR-T Cell Therapy that can be Activated, Silenced, and Reprogrammed In Vivo with Soluble Protein Adapters in Dose Dependent Manner

Results

ARC-sparX Tumor Killing is Dose Dependent

- sparX concentration dependent killing of GFP/Luciferase expressing H929 target cells dependent on the dose of mono-valent sparX-BCMA (top)
- ARC-T cells in combination with sparX-BCMA demonstrate dose dependent elimination of tumors generated with BCMA expressing NALM6 cells or use of daily CAR-T administration (bottom)

Bivalency Improves on Mono-valent sparX-BCMA Efficacy in vitro and in vivo

- Affinity measurements by surface plasmon resonance (SPR) using Biotin, shows 50-fold improvement in the affinity of sparX in vivo eptargets in vivo. BCRMA binding (red down) → sparX dosing controls ARC-T cell killing in a dose-dependent manner

Conclusions

- ARC-sparX is a novel, adoptive, and controllable cell therapy platform
- sparX proteins can be engineered to target different antigens
- Uniform ARC-T cell product can be paired with any sparX
- ARC-sparX activity can be tuned through engineering sparX valency and titration
- sparX targeting BCMA or CD123 potently induce ARC-T activity to eliminate tumors
- ARC-sparX performs on-par with traditional scFv-based CAR-T with the following differences:
 - ARC-T cells are not constitutively active
 - sparX dosing controls ARC-T cell killing in a dose-dependent manner
 - ARC-T cells can be reprogrammed in vivo by switching sparX

Future Plans

- Use current collection of sparX to treat hematologic malignancies, solid tumors, and autoimmune diseases
- Ongoing Phase II clinical trial of CART-ddBCMA for the treatment of multiple myeloma (MM) is designed to validate the functional properties of our novel non-scFv binding domain
- Planned Clinical Trials
 - Phase I trial for ARC-T + sparX-BCMA for MM
 - Phase I trial for ARC-T + sparX-CD123 for AML/MDS
 - Continue to expand collection of sparX proteins to bind different antigens, including novel targets
 - Pursue allogeneic ARC-T program

References

- 2018 Sep;180(1):134-42. Blood.